
Related Technologies

Related Technologies

- GISs are closely related to several other types of information systems, but it is the ability to manipulate and analyze geographic data that sets GIS technology apart.
- Although there are no hard and fast rules about how to classify information systems, the following discussion should help differentiate GIS from desktop mapping, computer-aided design (CAD), remote sensing, DBMS, and global positioning systems (GPS) technologies.

The relationship between GIS, computer-aid design, computer cartography, database management and remote sensing information systems.

CONTRIBUTING DISCIPLINES AND TECHNOLOGIES

- GIS is a convergence of technological fields and traditional disciplines
- GIS has been called an "enabling technology" because of the potential it offers for the wide variety of disciplines which must deal with spatial data

CONTRIBUTING DISCIPLINES AND TECHNOLOGIES

- Cartography
- Remote Sensing
- Photogrammetry
- Surveying
- Geodesy
- Statistics
- Operations Research
- Computer Science
- Mathematics
- Civil Engineering

List of Disciplines

- Heritage
 - Geography "
- Data Collection "
 - Remote Sensing "
 - Photogrammetry "
 - Surveying "
 - Geodesy "
 - GPS "
- Data Analysis "
 - Statistics "
 - Operations Research "
 - Computer Science "
 - Mathematics "
- Data Reporting "
 - Cartography "
 - Computer Graphics

	Function of GIS									
		Spatial DATA	Attribute DATA	Mapping	Preprocessing	Database	Spatial analysis	Modeling	Display	Application
	Cartography	*	*	*					*	*
	Remote Sensing	*	*	*			*		*	*
	Photogrammetry	*		*				*	*	*
	Surveying	*		*						
	Geodesy		*	*						*
	Statistics		*		*	*				
	Computer Science		*		*	*	*	*		*
	Mathematics				* SE 46	6-2022		*		
Dr. Basi										•

Geography

- broadly concerned with understanding the world and man's place in it
- long tradition in spatial analysis
- provides techniques for conducting spatial analysis

Cartography

- concerned with the display of spatial information
- currently the main source of input data for GIS is maps
- provides long tradition in the design of maps which is an important form of output from GIS
- computer cartography (also called "digital cartography", "automated cartography") provides methods for digital representation and manipulation of cartographic features and methods of visualization

Remote Sensing

- images from space and the air are major source of geographical data
- remote sensing includes techniques for data acquisition and processing anywhere on the globe at low cost, consistent update potential
- many image analysis systems contain sophisticated analytical functions
- interpreted data from a remote sensing system can be merged with other data layers in a GIS

Photogrammetry

using aerial photographs and techniques for making accurate measurements from them, photogrammetry is the source of most data on topography (ground surface elevations) used for input to GIS

Surveying

provides high quality data on positions of land boundaries,
 buildings, etc

Geodesy

- source of high accuracy positional control for GIS , GPS,
 remote sensing and surveying
- concentrates on placing objects accurately in a "global" context

Statistics

- many models built using GIS are statistical in nature, many statistical techniques used for analysis
- statistics is important in understanding issues of error and uncertainty in GIS data

Computer Science

- advances in computer graphics provide hardware, software for handling and displaying graphic objects, techniques of visualization
- database management systems (DBMS) contribute methods for representing data in digital form, procedures for system design and handling large volumes of data, particularly access and update
- artificial intelligence (AI) uses the computer to make choices based on available data in a way
 that is seen to emulate human intelligence and decision-making computer can act as an
 "expert" in such functions as designing maps, generalizing map features
- although GIS has yet to take full advantage of AI, AI already provides methods and techniques for system design

DBMS

- Database management systems specialize in the storage and management of all types of data including geographic data.
- DBMSs are optimized to store and retrieve data and many GISs rely on them for this purpose.

Mathematics

several branches of mathematics, especially geometry and graph theory, are used in GIS system design and analysis of spatial data

CAD

- CAD systems evolved to create designs and plans of buildings and infrastructure.
- This activity required that components of fixed characteristics be assembled to create the whole structure.
- These systems require few rules to specify how components can be assembled and very limited analytical capabilities.
- CAD systems have been extended to support maps but typically have limited utility for managing and analyzing large geographic databases.